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Linear signal models a:e commonly used in digital signal processing, leading naturally

to the use of linear subspaces to separate signals from noise. A linear model is often -t rcalistic

model for a signal. In other cases a linear model represents a good approximation to the signal

and is used because of its mathematical convenience.

Some common types of noise can also be dealt with by applying a linear model to the

noise as well as to the signal. We describe noise that obeys a low rank linear model as structured

noise, and derive several signal processing methods based on a structured noise model.

Whereas orthogonal projection operators play a key role in the solution of classical

linear estimation and detection problems, the addition of a structured noise term to the model

leads to oblique projection operators in the new solutions. Because of the importance of oblique

projection operators, one chapter explores their properties.

Subspace identification is the determination of the modes of a linear signal or a struc-

tured noise source based on observed data. We consider the identification of signal subspaces

with no prior knowledge about the signal except that it obeys a low rank linear model. We then

consider signal subspace identification with the prior knowledge that the signal is a superposi-

tion of complex exponentials. We extend these identification techniques to a structured noise

model by considering the identification of structured noise subspaces with varying degrees of

prior knowledge about the signal and the structured noise. We propose a method of adaptively

updating existing signal and noise subspace models based on new data. And we consider the

issue of order selection when identifying subspaces.

Another category of contributions is parameter estimation with structured noise. Here

v. assume that the signal and structured noise subspaces are known or have been identified

fruif l:c;'cA lata. We derive oblique projections for estimating signals with varying prior

knowledge about the parameter distributions.
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We apply these results to the decoding of complex number codes for detection and cor-

rection of impulse errors. In this example we apply both subspace identifcation and parameter

estimation techniques.
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CHAPTER I

Introduction

We present here a collection of advancements in the theory and practice of digital

signal processing, based on the use of linear subspaces. All subspace signal proces-ing techniques

share the common goal of mitigating the effects of noise. Usually they are used in the context

of some kind of an estimation or detection problem, as in the SVD based modification of linear

prediction discovered by Tufts and Kumaresan [TuK82] where the coefficients of a whitening

filter for a given signal are to be estimated. Their method takes advantage of the fact that

linear combinations of complex exponential signals will lie in a subspace whose rank is equal to

the number of different complex exponentials present. It follows that any components of the

received data that lie outside this low rank subspace are due to noise. This is a typical example

of subspace signal processing where the signal of interest is assumed to lie in a low rank linear

subspace.

1But noise comes in many varieties, from the background hiss of an analog magnetic

audio tape to the sharp crackle of lightning striking a telephone wire. Previous techniques

of noise suppression through subspace signal processing have been oriented toward the former

jvariety of noise. They model the desired signal as a vector that lies in a low rank subspace,

and the noise as a random vector that may fall anywhere in the observation space. The next

level in noise modeling is to allow correlated noise by applying a shaped probability density to

the noise vector. We go a step farther and allow total dependence of some noise samples by

I assuming that a significant component of the noise lies in some linear subspace. We call noise

components that lie in a linear subspace "structured noise". Many of the new signal processing

methods we propose deal with structured noise.

I
I
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The application of a linear model to noise is arguably just as reasonable as the appli-

cation of a linear model to signal. For what we consider as our desired signal in one problem

may become interference in the next. Power transmission waves at 60 Iz may be signal to

the power engineer. For most everyone else they represent a ubiquitous form of structured

noise. Lightning may cause impulsive noise (large ampltude noise that affects only a few data

samples), which is also a form of structured noise.

Subspace signal processing in the structured noise model may be divided into two main

parts. First the signal and noise subspaces must be identified. Chapters III through V of this

dissertation deal with the problem of subspace identification. Once identified, the subspaces

must be used to some advantage in solving estimation or detection problems. Chapter VI

applies the subspace models to several estimation problems.

1.1 Overview

This chapter contains a general introduction and outline of the dissertation, a summary

of the research contributions of this work, and an introduction to linear modeling of signals

and noise. We also begin to establish our mathematical notation. Several types of signals that

are well represented by linear models are discussed, and it is shown how a model matrix for a

linear model is formed for several cases.

Chapter II covers some of the specialized linear algebra necessary for the signal sub-

space techniques prcsented in ld4er chapters. Particular emphasis is given to projection opera-

tors, their properties, and how to construct them for given subspaces. The distinction between

orthogonal projections and oblique projections is emphasized, and a coordinate transformation

is derived which relates the two.

In Chapter III we consider the problem of identifying linear subspaces from observed

data. The chapter begins with a critical evaluation of the principle of Maximum Likelihood

(ML), concluding that it is most appropriate for sets of parameters that are uniformly dis-

tributed. or at least not known to be highly nonuniform. We then present identification tech-

niques for both signal subspaces and noise subspaces.
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In Chapter IV we extend the subspace identification techniques of Chapter III to

the case where we have a prior model for the signal which imposes structural constraints

on the subspace estimates. Specifically we consider signals composed of complex exponential

modes whose subspaces must therefore be spanned by Vandermonde type matrices (we follow

Demeure [Dem89] in applying the term Vandermonde to non-square matrices whose columns

are complex power series). We present improvements to two existing algorithms for identifying

such subspaces. We then extend one of the algorithms to deal with the presence of structured

noise.

Order selection, the process of choosing the appropriate rank of a signal subspace

or structured noise subspace, is an important aspect of subspace identification. Chapter V

addresses some problems in subspace order selection.

We consider a special set of estimation problems in Chapter VI. The distinguishing

feature of these problems is the use of linear models for both signal and noise simultaneously.

In other words, they are problems of signal (or parameter) estimation in structured noise. A

common thread in most of the solutions is the appearance of oblique projection operators. The

subspaces identified analytically or by the techniques of Chapters III through V are used to

determine oblique projections to be used for signal processing.

Chapter VII concludes this dissertation with a summary of what has been accom-

plished, conclusions and limitations, and suggestions for extending the research.

1.2 Related Work

The problem of estimating the frequencies of multiple sinusoids is viewed here as

a subspace identification problem. This problem has been addressed by many researchers,

with some of the more notable papers being published by Prony [ProI7951, Rife and Boorstyn

[RiB76], Tufts and Kumaresan [TuK82], Starer and Nehorai [StN88], and Kumaresan. Scharf

and Shaw [KSS86]. The order selection aspect of the subspace identification problem has been

addressed by Fuchs [Fuc88], Tuan [Tua88], Kumaresan, Tufts and Scharf KTS84], Wax and

Kailath [WaK85], and Akaike [Aka74].
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Regarding the parameter estimation problems of Chapter VI, related work has been

published by Marshall [Mar841, [MarS51, [NlarS6l, Wolf [Wol831, Kumaresan [Kum851, and

Scharf, Mathys and Behrens [SMB87] in the context of error correction codes and burst errors.

Our original presentation of the structured noise estimation problems addressed in Chapter VI

is [BeS88].

For a treatment of the classical least squares problem without linearly modeled noise,

see Golub and Van Loan [GVL89] or Lawson and Hanson [LaH74].

1.3 Contributions

We now summarize the original research contributions of this dissertation, indicating,

where appropriate, the foundational work we have built upon. Specific contributions are

1) The emphasis on oblique projection operators as useful tools in signal processing.

2) The equations in Chapter II for construction of an oblique projection with a specified

range and null space.

3) The representation in Chapter II of an oblique projection as coordinate transfor-

mation plus orthogonal projection.

4) The relationship in Chapter II between the singular values of an oblique projection

and the principal angles between its range and null space.

5) The critical evaluation in Chapter III of the Maximum Likelihood principle and the

example using a quadratic equation to illustrate the pitfalls of blind application of ML.

6) The extensions in Chapter III of the ML subspace identification technique of Scharf

[Sch9l]. One extension is to deal with complex data and unknown noise variance. Another is

to deal with a constraint on the identified subspace. The last and most significant extension is

to deal with the presence of structured noise.

7) The presentation in Chapter III of the heretofore unpublished method of Steve

Voran [funpublished notes] for using Total Least Squares to update signal subspace models. and

the extension of that method to allow simultaneous updates of signal subspaces and structured

noise subspaces.
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8) The incorporation in Chapter IV of the technique of Starer and Nehorai [StN881

for enforcing constraints on the AR parameters into the algorithm of Kumaresan, Scharf and

Shaw [KSS86) (the KiSS algorithm, also called IQML [BrM86]) for finding the ML estimates

of those parameters. Also a corrected and clarified presentation of the KiSS algorithm and a

discussion of some implementation issues.

9) The extension in Chapter IV of the derivations by Starer and Nehorai [StN88]

of the gradient and Hessian of the KiSS objective function to the case of complex data and

parameters. Also the derivation of more elegant expressions for the gradient and Hessian leading

to a filtering interpretation. The extension to complex data and parameters is more substantial

than it may first appear, because of the complexity of the equations involved.

10) The extension in Chapter IV of the KiSS algorithm to deal with structured noise.

11) The derivation in Chapter V of a new order selection rule for rank reduction in the

Linear Statistical Model. We first presented this result at the IEEE International Symposium

on Information Theory in San Diego, January 1990, [BeS90].

12) The derivation in Chapter V of a Bayes hypothesis test for order selection in the

identification of structured noise subspaces.

13) The oblique projection estimators in Chapter VI for signal estimation in the pres-

ence of structured noise. We first presented these results at the Asilomar Conference on Signals,

Systems and Computers, November 1988, [BeS88).

14) The application in Chapter VI to decoding block codes over the real and complex

number fields. We first presented this result at the Asilomar Conference on Signals, Systems

and Computers, November 1987, [SMB87],

1.4 The Linear Model: Notation and Terminology

We represent a scalar by any symbol in an italic font, such as n. All vectors are column

vectors and are represented by a symbol with an underbar, such as 1. Contexts requiring a row

vector will be handled with the transpose of a column vector. All matrices are represented by

symbols in a bold font. and are usually upper case, such as H. The subspace spanned by the
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columns of a matrix is represented with angle brackets around the symbol for the matrix, such

as (H).

A superscript T is used to indicate the transpose of a matrix or vector, such as

HT. For complex matrices we must distinguish between the plain transpose and the complex

conjugate (Ilermitian) transpose. We use superscript H for Hermitian transpose and T for

plain transpose. The complex conjugate alone is represented by a superscript *. A circumflex

over any variable generally represents an estimate of that variable, such as 2 for an estimate of

Except where noted all signals referred to in this dissertation are discrete time signals.

In the linear model a signal is characterized as a weighted sum (linear combination) of certain

modes. The set of weights determines a specific signal out of the class of signals which obey

the model.

The convenience and power of a linear algebraic framework apply naturally to vector-

valued signals. But even scalar-valued signals discrete-time can be placed in that framework

by considering finite length (windowed) observations as vectors. Arrange the signal modes as

columns of a matrix H and the mode weights as elements of a vector 0. The product of the

mode matrix and the weight vector is the signal, x = HO. This linear model for the signal

places x_ in a finite dimensional linear subspace known as the signal subspace, and spanned by

the columns of the mode matrix H. The mode weights 0 of a specific signal parameterize its

position within the signal subspace.

Let Z be an n-vector representing the signal of interest. The linear model says that.

x_= HO,

n nxm m

Of primary interest to us is the so-called overdetermined case. where n > m so that there are

more observations than parameters. In this case, the space (H) is the signal subspace.
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1.5 The Linear Statistical Model

When additive random noise affects a linear signal, the resulting received data vector

U obeys what has been called the linear statistical model:

Ut - _ + LI

n nxm m m

Here -v is an n-vector of random noise. This model has found many applications in digital signal

processing, such as those presented by Scharf [Sch9l], Dunn [Dun86], and Buckley [Buc87].

1.6 The Structured Noise Model

A more appropriate model in many situations is the following generalization of the

linear statistical model. This model for the received data is illustrated in Figure 1.1. The

signal parameter 0 sets initial conditions, or excites, the linear system H to produce the signal

K. Noise added in the communication channel is modeled in two parts: the unstructured noise

k, and the structured noise b that results from an underlying process p exciting the linear

system S.

The received data U is the sum

1 = H+ b + _

(1.3)

n n xm m nxt t n

The additional term accounts for what we call structured, or low rank. noise that lies in the

rank t subspace (S). It can be any signal which obeys a linear model but interferes with the

signal of primary interest. In some cases its power may be comparable to or even greater than

the power of the desired signal, resulting in a very poor signal-to-noise ratio when processed
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I Figure 1.1 Block diagram of the structured noise model.

3 according to the ordinary linear staistical model. The additional term in the model allows

knowledge about the structure of such noise to be used to its full advantage in processing the

I received data.

i The matrices H and S are both assumed to have full column rank. In some of the

developments which follow it is also necessary that they be linearly independent, so that the

composite matrix [H S] also has full column rank. It is necessary, but not sufficient, that

m+t < n, (1.4)

where m and t are the widths (and ranks) of H and S, and n is the dimension of the measurement

I space (length of H and S). We do not require that H be orthogonal to S.

* 1.7 Motivation for the Model

The linear model is quite versatile in terms of the types of signals which obey it.

3 The linear model includes the entire family of ARMA impulse responses such as complex

exponentials, sinusoids, damped sinusoids, real exponentials. and sums of any of these. Impulse

and burst signals also fit the framework of the linear model. Sometimes the linear model can

I
I
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serve as an acceptable approximation to a nonlinear signal. One such example is when a

nonlinear signal is band limited. We give some examples at the end of this chapter that show

how several specific signals may be represented in the linear model.

In signal processing, noise is usually treated as a full rank process in the measurement

space. However, in many situations it is more advantageous (or more realistic) to model part

of the noise as a process occurring in a space of lower dimensionality, which is then mapped

into the measurement space by some physical system. When the physical system is a linear

map, the structured noise obeys a linear model. In the measurement space, the resulting noise

is low rank and exhibits a structure dependent on the physical system. Thus we use the terms

low rank noise and structured noise interchangeably.

The structured noise model of Equation 1.3 applies the modeling versatility of the

linear model to both the signal and the noise simultaneously. It is especially appropriate in

any environment containing several competing signals, each of which constitutes noise from the

perspective of the others.

A classic example of competing signals occurs in any multiuser communication chan-

nel, such as the broadcast spectrum. Previous approaches to this problem have often centered

around making the signals of each user orthogonal to all other users' signals. But there may

be limits to the amount of control a designer has over the competing users. Orthogonality

between the various competing signal subspaces is clearly not always attainable, and the struc-

tured noise model gives us a tool for dealing with competing signals without the orthogonality

requirement.I
1.8 Examples

Power line noise can appear in received data as a sinusoid of known frequency (e.g. 60

Hz or 50 Hz). It lies in a rank 2 linear subspace and the two unknown parameters amplitude

and phase determine the position within that subspace. The Vandermonde matrix which spans

I
I
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this structured noise subspace is

(ei2-fIF)O (e-2'"rf/F)Of(ei2hffF)l (ei-2lrfIF)i
S - ji2T1/F)2 (ei-2 rf/F)2 j(1.5)

(ej-i2 /F)n-
1  (e-j

2 ,f1/F)n-
1

where f is the power line frequency and F = 1/T is the sampling frequency. The two param-

eters which multiply the columns of S are not actually amplitude and phase, but are another

parameterization of the amplitude and phase information.

The character of the problem changes somewhat when the frequency of the interfering

sinusoid is unknown. Frequency enters the equation nonlinearly, through the Vandermonde

matrix S. Determination of frequency is thus equivalent to a subspace identification problem

Iand is treated in Chapter IV.

For a band limited signal, a linear model does not necessarily apply, but an ap-

Iproximating linear model can be constructed using discrete prolate spheroidal wave functions

I(DPSWF's) [Sle78]. Begin by forming the autocorrelation matrix R of the band limited signal.

For a signal with power spectrum

S(ej) ifQwl<f, (1.6)
S~J')=0 if S1< 1W 1<5 ,

the elements of the autocorrelation matrix R are given by

Q sin Qfi - j)I rieg ij) i,jl= ... n. (1.7),x Omega(i - )

The eigenvectors of R are index limited DPSWF's and are the vectors used to form the signal

subspace. Choosing the eigenvectors corresponding to the m largest eigenvalues results in the

m-dimensional signal subspace containing the greatest possible portion of the signal energy.

IWe have given two examples of signals whose linear model may be constructed from

theoretical considerations. With that, we would like to move into the estimation of signal

Isubspaces in situations where theoretical models are insufficient to completely determine the

subspace. But first we must lay some mathematical groundwork. and we turn to that in the

next chapter.

I
I



CHAPTER II

Useful Mathematical Results

In this chapter we present some of the specialized mathematics used in the remainder

of the dissertation. The most significant results presented in this chapter are those involving

oblique projections. These include the oblique projection construction formulas, the coordinate

transformation, and the connection between oblique projections and principal angles between

subspaces.

2.1 Linear Subspaces and Spans

Our signal subspace processing algorithms work in the context of a vector space of n

complex elements. In most cases the same results apply to real n-dimensional space. A set of

m linearly independent vectors in such a vector space spans an m-dimensional linear subspace.

The subspace is the collection of all vectors that can be expressed as a linear combination of

the m spanning vectors. We usually arrange the vectors of a span as columns of a matrix. If

H is such a matrix, we designate the subspace spanned by the columns of H as (H).

The orthogonal complement to a linear subspace (H) is the linear subspace consisting

of all vectors orthogonal to (H), that is, all vectors orthogonal to every column of H. We

use the symbol (H)' to represent the orthogonal complement of (H). In n-space, if (H) is of

dimension m, then (H)' " is of dimension n - m. We also use the term perp-space to refer to

the orthogonal complement of (H).

The intersection of two linear subspaces (H) and (S) is the linear subspace consist-

ing of all vectors that are contained in both (H) and (S). The intersection may be trivial.

containing only the zero-vector, in which case we say that the subspaces are non-o'erlapping.

Non-overlapping does not imply orthogonality between subspaces. Orthogonality is a stronger
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condition and it does imply a trivial intersection. A necessary and sufficient condition for sub-

spaces (H) and (S) to be non-overlapping is that the composite matrix [H S] be of full column

rank. This of course requires the sum of the subspace dimensionalities to be less than or equal

to n.

2.2 Vandermonde and Toeplitz Spans

A rectangularly windowed ARMA impulse response with m simple poles z, ... z,r lies

in an m-dimensional linear subspace spanned by a matrix of the form:
:0 .. .0

Hrt (2 .1)

Such a matrLx is called a Vandermonde matriz when m = n [GVL89]. We follow Demeure

[Dem89] in using the term Vandermonde to apply also to the nonsquare matrix. Note that the

subspace depends only on the AR parameters, since they alone determine the pole locations.

The position of the ARMA impulse response within the subspace (H) is determined by the MA

parameters.

Let ao ... a, be the A.R parameters, that ,s. the coefficients of the monic (ao = 1)

polynomial whose roots are the pole locations z1 ... z,:

aj :, = 0, i= 1 ... m. (2.2)
1=0

Then the Toeplitz matrix of these coeffi'cients

am, 0
a.

". a.

L 0 a; _

is orthogonal to the Vandermonde matrix H:

AHH = o. '2.4)
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This orthogonality is easily verified by application of Equation 2.2. Since the rank of A is

guaranteed to be n - rn it follows that the orthogonal complement of the Vandermonde (H) of

Equation 2.1 is the Toeplitz (A) of Equation 2.3. That is, (H)"L = (A).

Vandermonde and Toeplitz mat:ices are not generally orthogonal spans for their sub-

spaces. Where it is necessary to find an o.thogonal span for a subspace defined by some

uon-orthogonal span, we use either a QR decomposition of the spanning matrix or its SVD.

2.3 Projection Operators

By the term projection we mean a matrix that is idempotent (equal to its own square):

E' = E. (2.5)

5The eigenvalues of a projection are equal to 0 or 1. However, a matrix whose eigenvalues are 0

or 1 is not necessarily a projection.

3 Orthogonal projections. Most mentions of projections in the literature refer only to

orthoginal projections, the subset of idempotent matrices for which the null space is orthogonal

to the range. In other words, an orthogonal projection whose range is (H) has null space (H)'L.3 A necessary and sufficient condition for a projection to be orthogonal is Hermitian symmetry:

pH = P. (2.6)

I For an orthogonal projection PH whose range is (H) and whose null space is (A) = (H) L. we

have
PHH = H,

(2.7)
PHA = 0.

Oblique projections. Projection matrices which are not orthogonal are referred to as

oblique projections. Oblique projections are idempotent but not symmetric. This more general

3 class of projections rlays a key role in Lhe structured noise problems of Chapters IIl through

VI. Since an oblique projection lacks symmetry, its null space and range are not orthogonal.

I For an oblique projection EH;S whose range is (H) and whose null space is (S), we have

EHsH = H,1 (2.)
EH;SS = 0.

i
I
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We use the following notation for projection operators. Orthogonal projections are

represented as P, usually with a subscript indicating the range. Oblique projections are rep-

resented as E, usually with a double subscript referring first to the range and second to the

null space.

Construction of Projections. We now give equations that will allow projection

matrices to be built from subspace spans for desired ranges and null spaces. Other formulas,

not equivalent to ours, for building oblique projections are given in [KaW89]. Assume that H is

a complex matrix of size n x m having full column rank, and likewise that S is a complex matrix

of size n x t having full column rank. Assume further that (H) and (S) are non-overlapping,

which implies m + t < n.

The well known formula to build an orthogonal projection whose range is (H) is

P. = H(HHH) - HH. (2.9)

The orthogonal projection whose range is (H) ± is given by

PH
J. = I- PH. (2.10)

The last projection operator may be obtained in another way which is of some use in subsequent

I theoretical analyses

H'= lim (I+ HHH)1 (2.11)

The following proof uses the Sherman-Morrison-Woodbury matrix inversion formula [GVL89]:

lim (I + rHH H)
- I

= lim (I-rH(I+rHHH)-iHH)

= lim I-H I+ H)H"(2.12)

k=I - H(HHH)-iHH

To build an oblique projection whose range is (H) and whose null space contains (S)

I
I
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take either of the expressions

EHS = PH(I - s(sHpHsH)-ISHP H

(2.13)
EH;S = H(HHPs.-H)-HHPs-.

Any remainder of Euclidean space, orthogonal to both (H) and (S), is also in the null space of

EHs. These expressions for oblique projections merit verification, since they are, as far as we

know, new.

To verify that the first expression for EH;S is idempotent, consider

EH;SEH;S = PH(I - S(SHPH.LS)-ISHPH-.)PH(I - s(SHPHJ.S)-IsHpH.)

= (PHPH - PHS(SHPH.-S)-ISPH PH)(I - S(SHPHi S)-ISHPH4 .)

(2.14)
= PH(I - S(SHp H S)-IS'PH-L)

= EH;s.

In the preceding sequence of steps we use the fact that PH is itself idempotent and that

PH .LPH = 0. Now we check the range and null space:

EH;sH = PH(I - S(SHPHJ.S)-ISHpH )H

= PHH - PHS(SHPH .S)-IsHPH.. H (2.15)

= H;

EH'SS = PH(I - s(SHPHiS)-lSHPH.L)S

= PH(S - S(SHPH .S)-ISHPH±S)
(2.16)

= PH(S - S)

=0.

Thus KH) is in the range of EH.s and (S) is in the null space. Finally, if A spans the perp-space

to (H, S) then PH .A = A. and PHA = 0, and SHA = 0. so

EH.sA = PH(I - S(SHP H-S)-ISHP 1. )A

= PH1 A - PHS(SHPIf.S)-ISPH A

2.17)
= 0 - PHS(SYPH.S)-1SHA

=0
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and we see that (A) is also in the null space of EH;S. Since we have accounted for all available

Idimensions we have determined that the range of E,;s is equal to (H) and the null space is

equal to (S, A).

To verify that the second expression for EH;s in Equation 2.13 is idempotent, consider

SEH.sEs4 ;s = H(HHPs.iH)-HtHPs.LH(HHPs.H)-lHP si-

- H(HHPs.5 H)-IHMPs. (2.18)

I = EH~s.

Check its range and null space:

EH;sH =H(HHPs.LH)-IHHPs.H
(2.19)--= H;

E,;S= H(HHPs-H)-HHPs5 -S
(2.20)I = 0;

EH;sA H(HHPs.-H)-lHHPs.-A

I = H(HHPsj. H)-lHMA (2.21)

-- 0 .

Thus the second expression is a projection with the same range and null space as the irst

expression. Therefore they are equal.

Another useful pair of identities follows from the two expressions for EH:s in Equation

2.13:

EH~s = PH(I - Es;H), (2.22)

SES;H = Ps(I - EHs). (2.23)

Where EsH is the oblique projection with range (S) and null space (H. A).

Singular values of projections. It is well known that the singular values of an or-

I thogonal projection matrLx are, like its eigenvalues. 0 or 1. This is true because for a symmetric

matrix the singular values are equal to the absolute values of the eigenvalues. Since the 2-norm

of a matrLx is equal to its largest singular value, orthogonal projections have unit 2-norm and

I
I
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will never make a vector longer by projection:

IIPXI- 2 < I112. (2.24)

For an oblique projection this is not the case. We will show in section 2.6 that the singular

values of an oblique projection can be 0, 1 or any value greater than 1. It follows that obliaue

projections can have a 2-norm greater than unity and that IIExI 2 may be greater than I!lI

2.4 A Three-Way Resolution of Euclidean Space

Given a subspace (H) and a subspace (S), define a new subspace (A) as the portion

of Euclidean space orthogonal to both krI) and (S). That is, (A) = (H, S) -. Now any vector in

Euclidean space can be expressed uniquely as the sum of three components, one each in (H),

(S) and (A This resolves Euclidean space into three pieces as shown in Figure 2.1.

<A>

,"PA,.Z

T- -~ 

<>

ES;Hy EH;SY

Figure 2.1 Three-way resolution of Euclidean space.

Corresponding to this geometric resolution is the algebraic identity

I = E-4 s + Es:H + PA. (2.25)

A corollary to Equation 2.25 is

PHs = EH:s + Es:H, (2.26)
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where PHs is the orthogonal projection whose range is (H, S).

Figure 2.1 is also useful to show how the oblique projection EH;s works. We say that

EHs projects U onto (H) along (S,A). By this we mean that EH;5s lies in (H), and that the

difference (I - EHs). lies in (S, A).

2.5 A Coordinate Transformation for Oblique Projection

In this section, we characterize a general oblique projection operator as the composi-

tion of a coordinate transformation and an orthogonal projection, as shown in Figure 2.2. The

required coordinate transformation F is derived to satisfy

EH;s = PHF. (2.27)

-------------------------------------------------- I

J I--------------------------
ES;H

Figure 2.2 A characterization of oblique projections.

Assume we have an oblique projection EHs whose range is (H) and whose null space is

I(S, A), where (A) is defined as (H, S). The coordinate transformation F should rotate vectors

in the subspace (S) to a new subspace (S'), while leaving vectors in (H, A) unaffected. The

new subspace (S') must be orthogonal to (H) to put it in the null space of PH. To complete
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F

Figure 2.3 Building up the coordinate transformation.

the determination of (S'), we also choose it to be orthogonal to (A), resulting in the definition

(S') = (H, A). k2.28)

It is easily seen that (S') has the same dimensionality as (S). This characterization of the

desired coordinate transformation leads immediately to the representation shown in Figure 2.3,

where R. is the required rotation from (S) to (S'). The coordinate transformation is given by

F = EHs + PA + REs;H. (2.29)

The transformation F is not a rotation. A rotation which moves vectors in (S) to (s') is given

by

R = QsQs (2.30)

where Q. is any orthogonal span of (S) and Q., is any orthogonal span of KS'). Note that R

could be any mapping from (S) to (S') and F would still satisfy Equation 2.27. The rotation

was chosen to preserve the length of vectors in the subspace (S).
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2.6 Principal Angles

I Principal angles between subspaces are a generalization of the geometrical concept

of angles between lines and planes. Given two subspaces (H) and (S) of n-dimensional space

there is a set of angles formed between them. The number of such angles is equal to the

dimensionality of the lower rank subspace.

Golub and Van Loan [GVL89] give the following definition for principal angles:

ce = arccos( max max uHv) = arccos(u01j), (2.31)
uE(Is) -(S)

subject 
to

yj1 j =0 j1 .i-i (2.32)

_HvI_ =0 j=1,...,i-.

Note that the definition is recursive in that the vectors u and v for the i" principal angle are

constrained to be orthogonal to all previous mi and _j respectively. Golub and Van Loan also

I show that the principal angles may be computed with the Singular Value Decomposition as

follows. Let UH be an orthogonal span for (H), and Us an orthogonal span for (S). Then the

principal angles between (H) and (S) are given by

ai = arccosA 1 , (2.33)

vhece Ai is a singular value of the product UHHUS.

We extend these results as follows. For an oblique projection EHS formed from sub-

space spans H and S according to Equation 2.13, the singular values of the projection matrix

are directly related to the principal angles between the two subspaces (H) and (S). Let the

singular values of EHs be denoted by o-i and the principal angles by nj. Then

I 1 (2.34)' -sin (ai)"

I To prove this, begin by noting that A, being a singular value of UHHUs means that

A? is an eigenvalue of UHHUsUsHU, = UHHPsUH. Substituting according to Equation 2.33

I
I
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we have cos 2 ai is an e.v. of UHHpsUH

i 1 - cos 2 a, is an e.v. of I - UHHPsUHII
=> sin2 ai is an e.v. of UH (I - P5 )UH (2.35)
=> is an e.v. of (UtHHPs.AUH) - I.

Since eigenvalues are invariant to an orthogonal transformation, this also implies that

s_1 is an e.v. of UH(UHPs.LUH)-1UH (2.36)
-- ! 2sin2 al

The matrix in Equation 2.36 is equal to EH;SEH;S, as can be easily verified by using the

span UH in the second form of Equation 2.13 for EH;S. It therefore follows that (1/sin ai) is a

3 singular value of EH;S and the proof is complete.

A corrolary to Equation 2.34 is that the singular values aj of an oblique projection

3 that correspond to principal angles ai are in the interval [1, oo). Because an oblique projection

is low rank, it also has singular values equal to zero that do not correspond to principal angles.

5Thus, the singular values of an oblique projection matrix may be 0, 1, and any value greater

than 1.I

I
i
I
I

I
I
I
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CHAPTER III

Subspace Identification with No Prior Model

The first task in subspace based signal processing is to identify the signal subspace

and, if appropriate, the structured noise subspace. Sometimes these subspaces can be identified

from theoretical considerations, as for example when the structured noise is 60 Hz power line

noise with unknown amplitude and phase. In other cases we must resort to observed data to

identify the subspaces. Even then we may or may not have enough prior knowledge about the

signal to impose constraints on the subspace estimate. In this chapter we consider the problem

of estimating signal and noise subspaces without structural constraints.

We begin with a general discussion of the Maximum Likelihood (ML) principle in

which we urge caution in the application of ML estimators, especially in the context of the

ML invariance principle. We then present an algorithm for ML estimation of signal subspaces,

and another algorithm for simultaneous MIL estimation of signal and noise subspaces. The

chapter ends with an application of Total Least Squares for updating signal and noise subspace

estimates based on new data. All of the subspace identification algorithms in this chapter make

use of the Singular Value Decomposition (SVD).

3.1 The Maximum Likelihood Principle

We use the principle of Maximum Likelihood (ML) to derive several of our subspace

identification methods. In ML subspace identification a joint probability density is assumed for

the observations !. This density is a function of the signal subspace which is in turn a function

I of some set of parameters a. The likelihood function for a given observation U0 is equal to

the probability density for !L evaluated at the observation ! and considered a function of the

parameters a. It is customary to simplify the likelihood function by dropping any constants

I
I
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that do not affect the location of the maximum in terms of the parameters q. The ML estimate

3 of a is the value of a that maximizes the likelihood function. Since the signal subspace is a

function of a, we can apply the invariance property of ML estimation [Sch9l] to say that we

Uhave also found the ML estimate of the signal subspace.

I must digress to discuss the worthiness (or unworthiness) of the Maximum Likelihood

principle. In some ways the ML principle is philosophically unattractive. Its basic assumption

3 is that whatever observation you make must have been a relatively likely observation. But this

need not be the case-unlikely realizations can and do occur, especially when the variance is

3 large. A more attractive principle of estimation is Maximum A posteriori Probability (MAP).

In MAP estimation, one chooses the most likely parameter values given the observation and a

elprior density on the parameters. If we consider the parameters as random variables, the ML

and MAP rules can be stated in a parallel fashion as

ML: max f~a(Z a);

(3.1)
MAP: max fain(_a1yo).

Thus while ML makes the observation likely, MAP makes the choice of parameters likely.

UUnfortunately MAP estimation requires the additional knowledge of the probability density of

3 the parameters. Since this density is not always known, we cannot always use MAP.

In spite of the philosophical oddity behind ML estimation, ML estimators have some

5desirable properties that make them a good choice when the parameter density is unknown.

First note that ML often corresponds to least squares estimation. More specifically, when the

observations consist of signal plus zero-mean white Gaussian noise the ML estimator is the

same as the least squares estimator wherein the parameters are chosen to minimize squared

error between the observation vector and the mean vector (a function of the parameters). For

3 colored noise, the ML estimator corresponds to a weighted least squares solution. The follom -ig

quadratic form represents both the least squares objective function and the negative log of the

I A better name would be Maximum A posteriori Likelihood. [Sch9l].

I
I


